On how monospecific memory-like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach.
نویسندگان
چکیده
We have recently shown that during progression to autoimmune diabetes in NOD mice, memory autoreactive regulatory CD8(+) T cells arising from low-avidity precursors can be expanded to therapeutic levels using nanoparticles coated with disease-relevant peptide-major histocompatibility complexes (pMHCs). Here we examine the dynamics of memory autoregulatory CD8(+) T cells specific for islet-specific glucose-6-phosphatase catalytic subunit-related protein(206-214), a prevalent β cell autoantigen; their high-avidity counterparts (dominant effectors); and all other autoreactive non-islet-specific glucose-6-phosphatase catalytic subunit-related protein(206-214)-specific CD8(+) T cell specificities (subdominant effectors) in response to pMHC-coated nanoparticle (pMHC-nanoparticle) therapy. We combine experimental data with mathematical modeling to investigate the clonal competition dynamics of these T cell pools. To mimic the response diversity observed in NOD mice, we simulated many individual mice, using a wide range of parameters, and averaged the results as done experimentally. We find that under certain circumstances, pMHC-nanoparticle-induced expansion of autoregulatory CD8(+) T cells can effectively suppress the expansion of dominant and subdominant effectors simultaneously but, in some few cases, can lead to the substitution (or switching) of one effector population by another. The model supports the idea that disease suppression is based on the elimination of autoantigen-loaded APCs by the expanded autoregulatory CD8(+) T cells. The model also predicts that treatment strategies that operate by selectively inhibiting autoantigen-loaded APCs, such as the pMHC-nanoparticle approach, have the highest promise to blunt polyclonal, multiantigen-specific autoimmune responses in vivo without impairing systemic immunity.
منابع مشابه
Development of memory-like autoregulatory CD8+ T cells is CD4+ T cell dependent.
Progression of spontaneous autoimmune diabetes is associated with development of a disease-countering negative-feedback regulatory loop that involves differentiation of low-avidity autoreactive CD8(+) cells into memory-like autoregulatory T cells. Such T cells blunt diabetes progression by suppressing the presentation of both cognate and noncognate Ags to pathogenic high-avidity autoreactive CD...
متن کاملDendritic cell-dependent in vivo generation of autoregulatory T cells by antidiabetogenic MHC class II.
Several mechanisms have been proposed to explain how certain MHC class II molecules afford dominant resistance to autoimmune diseases like type 1 diabetes (T1D). However, it remains unclear how protective MHC types can blunt autoreactive T cell responses directed against a diverse repertoire of autoantigenic epitopes presented by disease-promoting MHCs. In this study, we show that expression of...
متن کاملRelative diabetogenic properties of islet-specific Tc1 and Tc2 cells in immunocompetent hosts.
CD8(+) T cells are important effectors, as well as regulators, of organ-specific autoimmunity. Compared with Tc1-type CD8(+) cells, Tc2 cells have impaired anti-viral and anti-tumor effector functions, although no data are yet available on their pathogenic role in autoimmunity. Our aim was to explore the role of autoreactive Tc1 and Tc2 cells in autoimmune diabetes. We set up an adoptive transf...
متن کاملIL-2 Mediates CD4+ T Cell Help in the Breakdown of Memory-Like CD8+ T Cell Tolerance under Lymphopenic Conditions
BACKGROUND Lymphopenia results in the proliferation and differentiation of naïve T cells into memory-like cells in the apparent absence of antigenic stimulation. This response, at least in part due to a greater availability of cytokines, is thought to promote anti-self responses. Although potentially autoreactive memory-like CD8(+) T cells generated in a lymphopenic environment are subject to t...
متن کاملInterferon-γ Limits Diabetogenic CD8+ T-Cell Effector Responses in Type 1 Diabetes
Type 1 diabetes development in the NOD mouse model is widely reported to be dependent on high-level production by autoreactive CD4+ and CD8+ T cells of interferon-γ (IFN-γ), generally considered a proinflammatory cytokine. However, IFN-γ can also participate in tolerance-induction pathways, indicating it is not solely proinflammatory. This study addresses how IFN-γ can suppress activation of di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 185 10 شماره
صفحات -
تاریخ انتشار 2010